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3) 2n1= fng from (6.2). 

The quantities n,o must satisfy, for these solutions, the conditions 

(6.3) 

Analysis of conditions (6.3) yields positive results with regard to the problem of the 
existence of periodic solutions of the problem for sufficiently small p in the case of the 
commensurabilities l)-3). For example, in the case of commensurability nl= 2n, we have 

CD,+* = %,a(% p, o)sin(o+i) 

al.2 (6, P, VP) = D sin2T [sina0 - sinap (1 + cos tl + 2cos%)] 

and conditions (6.3) hold when o+ h= O,x;Or,,(O,p,cp)# 0 (here cos 0 - al& (a), cos p = If/K,(a), H is 

an arbitrary constant and D = constiO,cp,h are the coordinates of the centre of mass of the 
body in the fixed coordinate system /3/). We have analogous formulas and arguments in the 
case of the commensurabilities 2), 3). 

1. 

2. 

3. 
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AVERAGING IN A QUASILINEAR SYSTEM WITH A STRONGLY VARYING FREQUENCY* 

L.D. AKULENKO 

The problem of the applicability of asymptotic averaging methods to single- 
frequency quasilinear systems are studied for the critics1 case. It is 
assumed that in the asymptotically large time interval under consideration 
the frequency (the derivative of the oscillation or rotational phase) is 
a slowly varying parameter allowing the singularity to be approximated 
by a power function of slow time or of a small parameter. The value of 
the frequence can vary strongly , can become arbitrarily small and equal 
to zero, and the "frequency" can even change its sign. Such situations 
arise when studying the oscillating and rotating systems, and particularly 
often in the problem of the control of specified objects /l/. The present 

*Prikl.Matem.Mekhan.,51,2,244-252,1987 
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paper gives an estimate for the error of the averaging method (in the 

class of power-type estimates in terms of the small parameter, in an 

asymptotically large time interval). Examples of the analysis of specific 
mechanical systems are discussed. Non-linear oscillating systems have 
been studied using the method of averaging in the criticalcases("passage" 

through the separatrix and resonances), in a number of papers (see /2-S/ 
et al.). 

1. Formulation of the problem. Consider a class of quasilinear rotational-oscillatory 
systems which can be described using Van der Pohl-type variables, by the Cauchy problem of the 
form /l, 6-8/ 

2' = EZ (r, 2, cp), 2 (to) == z", E E (0, ELII (1.1) 
cp' = 11 (T, E), 'p (to) = 'PO, t E Ito, @k-l], T = Et 

Here z is a vector of any dimension, n> 1, zE D where D is an open space, cp is a 

scalar phase, Irp )< M, TE [zo,8] is the slow time, @> 0 is a constant independent of the 
small parameter, E> 0. The function 2 is assumed to be a 2n-periodic (or quasiperiodic, or 
uniformly almost periodic /9/, see Sect.4) function of the phase cp, sufficiently smooth in 

z, r in the region under consideration. The parameters of the problem tO,zo,(pO are the known 

initial data independent of E. 

Under the conditions that the frequency Y is separated from zero ( [Y(T, E) I>v~) 0) and 

the function Z is smooth, the method of averaging enables us to place in 1:l correspondence 

with the Cauchy problem (1.1) the problem averaged over cp, whose solution is &-close to the 

exact solution /l, 6-8/. Studying the averaged system using analytic or numerical methods is, 

as a rule, much simpler. The approximate solution obtained can be used to devise constructive 

procedures for separating the variables Z,'C, and 'p to an arbitrarily prescribed degree of 

accuracy in E and tE Ito, @&-'I, see /l, 6-8/, and a scheme of successive approximations (Picard's 

method) /lo/. From the point of view of practical applications, the study of the critical 

cases is of interest, when the frequency v(z, c) can vary strongly and pass through asymptotic- 

ally small values. 

We further assume that the frequency Y = ~(7, E) becomes asymptotically small in E in 
the time interval in question, or it may become zero, may pass through these values and may 

even change its sign. To be specific we assume that the function ~(7, E) is approximated by 

one of the expressions of the form 

(1.2) 

(1.3) 

The functions r(z), w (z, E) and parameters Zl(;,% fi appearing in representations (1.2) and 

(1.3) satisfy the conditions 

Here the parameters a,p,r* are constants independent of E. It should be noted that the 

case of fi> 1 is equivalent to system (l.l)-(1.3) with OIO. This is achieved by 

introducing an additional slow variable &I+rr z,,+1 = e@o and the corresponding phase $ = m - 

GLt1. Introducing further the dimensionless time 

t - to t’=_- 
0-70 

t’E[O, Cl], -C’=Et’= e, T’EP, 11 (1.5) 0 
%il--ro 7*'=-, T*‘E[O, I], IT*‘-T’IE[O, II 

0 

we reduce the Cauchy problem (1.1) and expressions (1.2)-(1.4) to a more convenient form (the 

primes are omitted for brevity). 

Our aim is to construct a scheme for the approximate solution of the Cauchy problem (l.l)- 

(1.4) (taking into account the substitution (1.5)), and to substantiate the estimate of the 

method of averaging in the class of the power estimates in e an asymptotically large time 

interval. 

The cases when the frequency v(~,E) (1.2) or (1.3) is asymptotically small in a or when 

it becomes vanishingly small in the process of the evolution of the system, substantially 
complicate the application of various averaging schemes /l, 4-8/. The difficulties may be 

caused by the special features of the right-hand sides of the standard-type equations (see 
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Sect.3), and by the failure of the basic requirement of the averaging method as regards the 
existence of their uniform means in t /6-E%/. Proofs of the validity of the averaging schemes 
based on the corresponding changes of the slow variables and estimations of the error of the 
method become unsound, since the expressions in the formulas for the change of variable contain 
the frequency in the denominator /l, 6-a/. Analysis of elementary examples /5/ shows that 
when the frequency is asymptotically small (v-e), the solutions of the formally phase- 
averaged system and of the initial system are not, as a rule, close to each other when t-e?. 
Thus situations are possible in which the method of averaging is essentially unsuitable for 
approximate investigations of systems of the type (l.l)-(1.4) (m is the "slow" or "non- 
rotating" phase). In such cases other asymptotic or numerical-analytic methods should be 
used. In the case of the class of systems (l.l)-(1.4) in question (we have a number of other, 
fairly wide classes of rotational-oscillatory systems) the method of averaging is found to be 
formally inapplicable, therefore we need more accurate estimates of the error, and these may 
be satisfactory when solving applied problems. 

2. Constructing estimates for the method of averaging. Below,weshallconsider 
specialcasesofexpressions (1.2)-(1.41 forfi = lwhich, aswas shownabove 
0 Se 0. 

, is equivalenttothecase 
Thus in order to be specific, let us consider the function Y of the form (1.2) with 

0 nz 0, i.e. in the dimensionless variables (1.S) 

v = v (7) = y (9 IT* - “c p, cc ,)- 0, z, z* E IO, 11 (2.4) 

Then we can write in (l.l), (2.1), without loss of generality, y(t) = y* = const, This 
is achieved by replacing the argument r by Q according to the formulas 

Y*l~*--~~d6/dT=y(t)IT*-~~~ 

fi=-@(T, T*), sp, z*)==O, 6*===6(T*, T*) 

Therefore .let the known function 5 = <(r, z") be a solution of system (1.1) formally 
averaged over ‘p for z: 

j' = Za (z, C), 5 (0) -= z’, (‘) 3 (d /dQ 

-G(r, ;)-&y ,,,, 5, cp)dv, zcz[O, 11, <ED 
0 

Then the estimate of the error (z - 5) is obtained, as usual /b-8/, us 
lemma. Using the subsitution 

z=t;+u+s, rp(t,e)-$+&s)d~ 
II 

(2.2) 

l's 

(2.3) 

ing Gronwal 

in which the variables 'c, 5 are regarded as parameters during the integration over s, we 
obtain the following estimate for the unknown 6 using standard methods /6/: 

(2.4) 

Here L is the Lipshitz constant of the function 2 in ZED, M is the maximum value of 
20 in 7, z C% IO, 11, K is a constant determined in terms of L,.M. Thus, in accordance with 
(2.3), (2.4), the error (z - 5) of the method of averaging is determined by the estimates of 
Ivl,lav/~l and Ilav/a5lI, which are of the same order of smallness in e for t E IO, C1l. 
Below we giveamethod of obtaining such estimates for system (1.11, (2.1) in question. 

Thus, let us require an estimate ofrthe quantity 



192 

in terms of the parameter E , Here i(q) is a periodic (possibly quasiperiodic, see Sect.41 
function of cp, which has zero mean according to (2.3). The differential relation connecting 
t and cp can be reduced to an expression of the form (we assume here, for brevity, that 
'p (0) = 0) y?‘~d~/dt-v(7)~y*tz*--afaT- (2.G) 

Y*Ia:+=-(* i_ a) y;‘u [UP 3 h(o), (,==(1 + a)_', GT----E(P 

Then, taking f2.6), into account, we can rewrite the expression for w (2.5) as follows: 

The value of the new slow variable (5 = O*syy* (1 -k u)-‘T*~+~~ for which the frequency 
h (a,) = Y (r,) = 0, satisfies, according to (2.61, the inequalities O,<a,<I’, since O.<T~,< 
1. Furthermore, using elementary transformations and substitutions, we can obtain the 
following expression for the required estimate w (2.7): 

w<O~P,O<p<~,O=const (2.X) 

Since f(ry*/e_y) is a Zn-periodic (or quasiperiodic) function of y which has uniform 
zero mean with respect to e, and the index up satisfies the inequalities OQcLp<1, it 
follows that we can obtain uniform estimates for the integrals in (2.8), 

According to (2.8), we need to estimate the improper integral F(x/e), aE (O,sJ. xE LO, r). 
The integrand has a singularity at y = 0 and the upper limit of the integrand xis+ca as 
a3 0. To obtain the estimate for this integral, we separate it into two integrals 

F(lt / E) = F(h) -/- (F(?4 / E) - p (~)) = F, + Fz 

iFj,<lF,I-I-IFSI‘ O<h<x/e 
lF, I<ahP, a = (1 + 4 ,;y I f I 

Eo 
I F, I < b (e) [km@ + 2 (8 f xPI 

(2.91 

b (e) = 

The estimate for F (2.9) reaches its minimum with respect to h(O<h,<x/e) when h =ab la. 
As a result we can obtain the following estimate uniform in E: 

1 P (x / E) 1 < aa%-~PgP / ‘p + 2b (e) (e f x)“@ (2.10) 

Thus the required estimate ofthe error in the method of averaging for system (1.11, (2.1) 
averaged over rp, is reduced, by virtue of expressions (2.31, (2.4) and (2.101, to the form 

I z - 5 1 < CeLeP, t 63 IO, e-l] (2.11) 

e E a e01, 0 < p < 1 (0 < a < 03) 

Here C is a constant which can be determined constructively from the parameters K, I'*, a 
introduced above and the constants a,b, characterizing, in accordance with (2.3), (2.51, (2.8)- 
(2.101, the estimates of lvj, [Lb/& 1, I)h/dcI[. Under the assumptions made in Sect.1 with 
regard to the properties of smoothness of the vector function Z (and especially about the 
continuous differentiability in z,% and continuity in (p) the function f corresponding, 
respectively, to v, d&r, avia< in the estimate (2.41, will be uniformly bounded for all 
values of the phase cp, discussed, here. This leads to the boundedness of the corresponding 
coefficients a(a) (O,<a<ca) in estimate (2.9) for F1. The mean value of the periodic Or 
quasiperiodic function, f i.e. possessing a finite-dimensional frequency basis (see /ll/)r is 
by definition equal to zero. Therefore, the integral in the corresponding expression b (a) 
of estimate (2.9) for F, is also bounded. This follows directly from the Fourier represent- 
ation /5-S, ll/. When the function f(q)( 1 cp I (CO) is uniform and almost periodic, we will 
need the condition that the set of frequencies hl, of its Fourier representation /S/ is 
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separated from zero, i.e. 

h,>i*>O, k=l,2,. . .; f (cp) = jl (fkC ~0s bcp + fdsin QP) 

Otherwise, when hhJ 0 and k+m, we will assume that the coefficients fhC,fk* decrease 
fairly rapidly. For example, we obtain the function f in the form shown, when system (1.1) is 

is linear in z, and has an uniformly almost periodic matrix of the coefficients and the in- 

homogeneity vector /9/. 
From (2.11) there follows the estimate IZ - 5 I= O(E) when a = 0, which corresponds to 

the equality v = y, i.e. to the non-critical case /6-8,'. In the limit, as a+OO, we find 

that F-too. However, because of expression (2.8) for the coefficiento. The coefficient C 

in (2.11) will be bounded, i.e. the estimate 1.~ - 5 1 = 0 (1) corresponding to the case of 

Y = 0 (E), and in particular to Y E 0 /5/, will hold. We note that the estimate (2.11) 

remains valid in more general cases when the function y depends continuously on E (y = Y(T,E)) 

and the right-hand side of system (1.1) for z also depends on E, and a relation of the form 

2 = 2" (r., 2, Cp) + spz* (r, Z, 'p, E), t z* 1 < M 

z ED, T E LO, 11, I 'p 1 < 00, E E (0, ~1 

is allowed. 
Using relations of the type (2.3)-(2.10) and taking into account the non-unique relation- 

ship t(m) or r(u) (see (2.5)-(2.8)), we establish the estimate (2.11) for the case of a 

sign-variable frequency v (1.3) when 0~0. Analogous estimates hold in the cases when the 

frequency can pass repeatedly through zero values. The situations in which the frequency 

v (7, E) is a discontinuous function of r, require a separate study. 

Let us consider an additional case when we have Y = O(E@), O,< p < 1, in the time interval 

t E [O, &-'I in question. This corresponds to y(r)= 0 in expressions (1.2) and (1.3). Then, 

introducing a new small parameter p = E- 1p and the argument 8 = @%E 10,~~'I and taking into 

account (1.5), we reduce system (l.l)-(1.4) to the standard form. We can employ in this 

system the usual procedure of averaging over the rapid "in slow time" 8 phase w in accordance 

with /6-E/. When the demands that the function 2 be smooth with respect to the slow variable 

given above are met, the first-order scheme of averaging leads to an error of the order of 
0 (p) = 0 (S-P) for 8 - p-' or t - E-l. 

Combining all the above examples, we can estimate the error of the method of averaging 

for a more general situation (see (1.2)-(1.41, (2.1)) 

V=&E)~Elly0(5)~~Jn, O,c,<l, o<czjoc 

v : v(t, E)E E?Jo(~) ( Ersign (z, - r) 

In this case the estimate of the error of the method of averaging based on expressions 

(2.11) and the estimates for the additional case mentioned above, are written as follows: 

1 Z - 5 1 < cpLp = CEr, X = (1 - n) (1 + a)-' 

0 < x < 1, t E [to, @E-r], 9 E [eo, @p--‘I, c = COnSt 

(2.14) 

If the expression for the frequency Y(Z,E) is of the usual form, e.g. (1.2) where r(z) 

and 0I(r,E) are sign-definite functions of the same sign, then the solution 5 (r, 0 of system 
(1.1) averaged over cp for t-t, - E- r differs from the exact solution z(t,zO,~) by an amount 
of the order of O(EO) (6>0), with 6 = max(p,i - fi) 
max (x, 1 - p), provided that y (t, e) = 0 (eq), 

in the case when y(r,e)= O(1) or 6 = 

as in (2.12). In the general case, when the 

expressions v(r,a) have the form (1.3) (and of the type (2.13)), we must investigate in 
more detail the process of "passage" through the zero value of the frequency and of its 

possible "sticking" in the neighbourhood of asymptotically small values. 

3. Examples of the dependence of the standard system and the frequency 
on the small parameter for specific oscillatory systems. An almost free system. 
We shall consider a vector system of the form 

Here r,z'= dx!dt are the n-vectors, cp is the scalar phase, and f(~,~,~,m,e) is a regular 
vector function. Using the substitution z'= &Y,r= (z,Y), we reduce the Cauchy problem for 
system (3.1) to its standard form (1.1) in which the right-hand side ez = @Y, ef (7, *, Y, cp. 8)). 
Making the corresponding assumption about the properties of the functions f and Y, we can 
apply to it the procedures of the averaging method for tEIO,~ewll, developed and proved above. 
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In particular, if f = f CT, z, 5*, cp, ~1, then the substitution x'= EY results in the independence of 
this function of y in the first approximation in E and t - E-I. 

A quasilinear scalar oscillatory system of the form x"+Y~z= evf with initial conditions 
2 (0) = 2, 2. (0) = v (0, E) u" , can be reduced with help of a Van der Pohl-type substitution to the 
form (1.1) corresponding to the additional case, provided that Y :y 8, (T, E). 

A perturbed system with small gyroscopic forces. For example, an equatorial component 
of the angular velocity vector of perturbed rotations of a dynamically symmetrical body is 

described by a Cauchy problem of the form /l/ 

5. = vy + Ef (Z, 2, Y, F), 5 (0) = z0 (3.2) 
Y' = - YY + &Y (7, 5, Y, E), Y (0) = Y0 

Carrying out the Van der Pohl-type subsitution of (5 Y) by (a, b, m) 
z = a co9 'p + b sincp, Y = - a sinm + b cos rp, q?= Y (T, F) 

we can obtain from (3.2) the equivalent standard problem 

a' = E (f co9 cp - g sin rp), a (0) = 8 = 5' 

0’ = E (f sin cp + g cm q), b (0) = b3 = go 
(3.3) 

Making the corresponding assumption about the properties of smoothness of the functions 

f, g and the structure of the functions ++ (.c> E) (see (1.2), (1.3), et al.), we can apply 
various schemes of the method of averaging to Cauchy problem (3.3). We should note that the 

dependence of the frequency v on 7 can result from the variation in the axial component of 

the angular velocity vector of the rigid body (see Sect.4). Other cases of a mechanical 

character are possible, reducible to the type (1.1) of the quasilinear rotational-oscillatory 

systems studied by asymptotic methods as in Sect.2. 

4. Optimal stabilization of the axial rotation of a dynamically symmetric 
apparatus by means of small controlling force moments. We study the problem of 

quenching the equatorial component of the vector o of angular velocity of a rigid body, when 

the variable rate of axial rotation 03 is given. The equations of controlled rotations in 

the coordinate system attached to the principal (central) axes of inertia and the corresponding 

boundary value problem take the form /l/ 

The inertia tensor I = diag (I,, Zz, Z3) in the problem in question satisfies the condition 

Z1 = I, = I# Z, (see (4.1)). Furthermore we introduce, for convenience, the dimensionless 
variables: the time t’, phase coordinates I,,, and v, the controls U1,2, u. a small parameter 

E, and write down the corresponding initial and final values 

t' =- mot, 1,,, = Zo,,,lL". v = (Z3w3/ L")N 

za u 1.2 - M,,, i (L"o"), EU = (M, / (L"oO))N, T' =: o"T 1.1 ~ 
1,,, (0) = z WI,; i L" = l,,,", 1,,, (T') = 0 

Y It,_;O,T. = (Z+I~~J / L") N = v'J, N = (I, - I) L"l(ZZ,o") 

(4.2) 

Here eal,z(~< 1) are small quantities characterizing the effectiveness of the controls 

w', L" are the initial values of the angular velocity vector w and kinetic moment L = JO 

respectively, and the primes accompanyingt 'and T' will be omitted from now on. Using 

relations (4.2), we reduce the boundary value problem (4.1) to the form (see (3.2)) 

L * vL1=eQu1,"., 
e 

‘L, (0) = h,,? b,,(T) = 0 (4.3) 

Y' = EL', v (0) = v', v (T) = VT 

We further assume, that the instant of time t = T of termination of the control 

process is determined by varying the magnitude of Y(t), characterizing the angular velocity 

ma of the axial twist of the apparatus. This may depend on the constraints imposed on the 

control u, Iv IQvo (i.e. on the axial force moment Ma) and on the essential quantity 

lvr -v" I (i.e. on the difference (osT - O,O)). Thus the control U=u* (t), the variable 

v = v (r) and time T are as follows: 

v = v* (t) = v0 sign (vr - 9). v = v (z) = v" + v*r (4.4) 

z = E.? E-LO, Sl, 0 = eT = 1 v= -YE I/ Ilo @I* ZE 0, t> T) 
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Comparing with the results of /l/, we consider here a more general case, when the axial 
component of the angular velocity may change its sign, i.e. when there exists T = 7* E (O,@) 

such that Y (t,) = 0. We pose the problem of control, optimal with respect to the energy con- 
sumed, over the variable l,.,, withthe instant T of the termination of the process fixed 
according to (4.4). 

We introduce, in accordance with Sect.3, the osculating variables aI,, by means of the 
variable stistitution 1, = a,cos 'p -a2 sin (p, 1, = a, sin 'p + a, cos (p, 'p' = V, where the phase cp 
is a known function of time. As a result of the transformation, the problem of optimal contra 
in question is reduced to the standard form /l/ 

al* = E (alul cos 'p + azuz sin cp), a, (0) = ZlO, al (T) = 0 (4.5) 
a 2' = E (-alul sin 'p + aaua cos cp), a2 (0) = &', a, (T) = 0 

q' = v (T) FE v" + u*z, 'p (0) = 0 

e 

4,[ul, ur]= +- 
s 
(uIa + d)dz-+ lnin 

0 111, % 

Here we assume that the quantity 8 is sufficiently large (see above), therefore the 
possible constraints which can be imposed on the controls z+,u, are not attained /l/ and do 
n6t appear in the formulation of the problem (4.5). Using the Pontryagin maximum principle 
we can establish that the variables PlV Pa (moments) conjugated with the phase variables 

a,, a,, are retained, i.e. pl,a = con&, and the optimal control is equal to 

u1 = a, (pl cos cp - pa sin cp), uS = a, (pl sin ‘p + pa cos cp) (4.6) 

Substituting the expressions for Ul? uz (4.6) into Eqs.(4.5) and taking the initial 
conditions into account, we arfive at the special case of the Cauchy problem of the form (l.l), 
(1.3), since its right-hand sides are known 2n-periodic functions of the phase rp. The 
solution of the boundary value problem can also be obtained by elementary methods and leads 
to very bulky expressions. Averaging over cp enables us, according to Sect.2, to obtain 
simple approximate expressions for the phase variables and moments 

(4.7) 

The values of the constants qt.2 in (4.7) are given by the final zero conditions for 
5 1.2 , and determined by elementary methods. Substituting ~,ainto the constants kmz in 
place of ~1.2, gives the required, approximately optimal program control (and its synthesis) 

U1* = -2a, (al" + aa2)-%-' (L1" cos cp - 1," sin cp) 

Us* = -2%'(a12 + aza)-W1 (Z1" sin 'p + Z2" cos cp) 

(L + L,, 8-t@--) 

(4.8) 

The control u$ (cp, 110, Zt) (4.8) is approximately optimal in the following sense. The 
solution of the corresponding Cauchy problem (4.5) leads to the functions ata(t, llo, Zeo, E), whose 
values at t = T are determined in the 
Q 

1/E-neighbourhood of zero._ The value of the functional 
(4.5) for ~TB (4.8) differs by an amount of the order of O(f/e) from the exact minimum 

value, and this is established by direct solution of the initial problem of optimal control 
(4.5). 

It should be noted that the approximate solution (4.4), (4.7), (4.8) of the problem of 
optimal quenching of the equatorial component of the angular velocity vector of the body, 
and of bringing its axial component to the Jfgneighbourhood of the prescribed value, i.e. 

1 v (8) -9 1 < C 1/c IZ,a (@) + Z,2 (@)I"* = b,'(8) -I- ~2 (@)l'h < C 1/F 

given above, holds also in the ,case when the body in question is not strictly dynamically 
symmetric and the estimates III-I% 1 = O(E), ]ZI,S ---I, 1 = O(1) hold. The proposed approach 
can also be us&d with a wider class of perturbations acting on the system (4.11, depending 
on the vector o and slow time z (see (3.2), (3.3)). 

With regard to the practical applications, it is important to develop and extend the 
analogousapproachof the approximation method to the multifrequency systems under the con- 
ditions of "passage" and "sticking" at the resonances. 

The analysis of the essentially non-linear systems, single phase of the type (1.1) and 
the multiphase systems for which the frequencies VI =vj(z) may attain, in the course of 
evolution, or even "pass", zero or resonant values /2-5/, are of great practical interest, 
at the same time presenting considerable theoretical difficulties. 
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INVESTIGATION OF PARTIAL ASYMPTOTIC STABILITY AND INSTABILITY BASED ON 
THE LIMITING EQUATIONS* 

A.S. ANDREYEV 

A new type of limiting equations is studied, used to investigate the 

asymptotic stability and instability of unperturbed motion with respect 

to some of the variables, based on the Lyapunov function with a sing- 

constant derivative, without assuming that the perturbed motions are 

bounded over the non-controlled coordinates. Sufficient conditions are 

derived for the asymptotic stability with respect to the generalized 
velocities and some of the generalized coordinates of the zero position 

of equilibrium of the non-autonomous, holonomicandnon-holonomicmechanical 

systems under the action of dissipative forces. 

1. Let us consider the following system of equations: 

5' = x (t, z) (X (t, 0) = 0) (1.1) 

I E R"',,z = (y,z), y E R", z E RP (m = s + P) 

The function X(t, x): R+ X I?-+ R"(R+ = LO, +oo[, r={IIYIIcH>o, IIzll<+m), IIYII 
is a norm in R", (IzIJ in Rp,, llxll =llYll +ljzll) satisfies the conditions for the existence of 

solutions in the Caratheodory sense /l/. A locally integrable function r(t)6Z& exists, 

continuous in x for fixed t, measurable in t for fixed X, for every compact set Kc~ such 

that 11 X(t,s)l[<r(t). We shall also assume that system (1.1) satisfies the conditions of z- 

continuability of the solutions /2/. 
we will also introduce a shift of the function X(t,s) in t by an amount r> 0 according 
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